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Abstract

Single loop inductance detectors measure traffic volume and occu-
pancy, but not speed. However, speed is roughly equal to the ratio
of volume to occupancy, multiplied by the average vehicle length. To
obtain a simple conversion rule, it is often assumed that the average
vehicle length is constant. We and other authors have checked the
validity of this assumption and found that it does not hold in general.
In this paper we present an alternative. Based on the assumption that
during low occupancy vehicles travel on average at a known free flow
speed, we can estimate a time dependent vehicle length curve. Using
this curve, instead of a constant, we obtain an speed estimate that is
approximately unbiased. We note that the estimator suffers from a
large variance during low traffic consitions, but then show that this
can be remedied by using an adaptive filter. We have successfully
tested our method on double loop (“speed trap”) traffic data from the
I80 Emeryville field experiment.

1 Introduction

Single loop inductance detectors are by far the most common traffic mea-
surement device. A loop detector measures traffic volume (the number of
vehicles during a time interval) and occupancy (the fraction of time during
which the presence of a vehicle is sensed). Let N(d, t) denote the volume
(“flow”) and ρ(d, t) the occupancy observed at a particular loop detector on
day d during time interval t. Single loop detectors do not directly measure
speed. This is unfortunate, because speed is perhaps the single most useful
variable for traffic control and traveler information systems.

Let us fix a day d and a time of day t and consider the following situa-
tion. Suppose that at a given detector during a 30 second time interval N
vehicles pass with (effective1) lengths L1, . . . , LN and speeds v1, . . . , vN . The
occupancy is given by ρ =

∑N

i=1 Li/vi. Now, if all speeds are equal during
the sample period, v = v1 = · · · = vN , it follows that

ρ =
1

v

N
∑

i=1

Li =
NL̄

v
, (1)

1The effective vehicle length is equal to the length of the vehicle plus the length of the
loop’s detector zone.



where L̄ =
∑N

i=1 Li/N is the average of the vehicle lengths. We see that
if the average vehicle length is known, we can infer the common speed. We
model the lengths Li as random variables with common mean (mathematical
expectation) µ. Note that the Li and L̄ are not directly observed. If µ were
known, while the average L̄ is not, then a sensible estimate of the common
speed may be obtained by replacing the average by the mean in (1).

v̂ =
Nµ

k
. (2)

Re-writing, we find v̂ = vµ/L̄. Since the expectation of 1/L̄ is not equal
to 1/µ, the expectation of v̂ is not equal to v. In other words, v̂ is not an
unbiased estimator of v, despite our assumption that all vi are equal. If the
number of vehicles N is not too small, then L̄ should be reasonably close to
its mean and the bias negligible. Henceforth, we neglect this bias issue and
use formula (2) to estimate speed. We thus focus on estimating the mean
vehicle length, µ.

2 Estimation of the mean vehicle length

Currently, it is a wide spread practice to take the mean vehicle length to be
constant, independent of the time of day. The validity of this assumption has
been examined by many authors (e.g. Hall and Persaud, 1989 and Pushkar
et al., 1994), including ourselves (Jia et al., 2000) and it is now generally
recognized that it does not hold up in general. This is further illustrated
by double-loop data from Interstate 80 near San Francisco (Coifman et al.,
2000), which allows direct measurement of speed. Figures 1 and 2 show the
speed and the average (effective) vehicle length at detector station 2 in the
East bound inner (fast) lane 1 and the outer lane 5. We see a clear daily
trend in effective vehicle length in lane 5. We believe that this trend can be
ascribed to the ratio of trucks to cars varying with the time of day. This is
confirmed by the fact that the vehicle length in the fast lane 1, with negligible
truck presence, is almost constant. We thus assume that the mean vehicle
length depends on the time of day, denote it by µt to reflect this dependence,
and consider how µt can be estimated.

Suppose we have observed N(d, t) and ρ(d, t) for a number of days. Let
α0.6 denote the 60-th percentile of the observed occupancies. Assume that
during all time intervals when ρ(d, t) < α0.6 all vehicles travel at a common
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speed vFF . Since we may assume that any freeway is uncongested at least 60
per cent of the time, vFF may be regarded as the free flow speed. Throughout
this paper we assume that vFF is known or estimated from exterior sources
of information.

By our assumption on constant free flow speed, we have for all (d, t) such
that ρ(d, t) < α0.6

L̄(d, t) =
vFFρ(d, t)

N(d, t)
.

If we assume that the average vehicle length L̄(d, t) does not depend on
whether the occupancy is above or below the threshold then

E(L̄(d, t) | ρ(d, t) < α0.6) = EL̄(d, t) = µt.

For fixed t we can obtain an unbiased estimate of µt as

µ̂t =
1

#{d : ρ(d, t) < α0.6}

∑

d:ρ(d,t)<α0.6

vFF ρ(d, t)

N(d, t)
.

In Figure 3 we have plotted the time of day t versus vFFρ(d, t)/N(d, t) for
all times (d, t) when ρ(d, t) < α0.6. We can now estimate the expectation µt

of the effective vehicle length by fitting a regression line to this scatter plot,
via loess (Cleveland, 1979). The smooth regression line seen in Figure 3 is
our estimator µ̂t of µt. Note the absence of points for times between 3pm
and 6pm when I80 East is always congested.

Once we have an estimator µ̂t of µt, we define a (preliminary) estimator
of v(d, t) as

v̂(d, t) =
N(d, t)µ̂t

ρ(d, t)
. (3)

This estimator is plotted in Figure 4. We see that it performs very well during
heavy traffic and congestion. In particular, it exhibits little bias during the
time period 3pm to 6pm over which the smoothing shown in Figure 3 was
extrapolated. Unfortunately, the variance of the estimator during times of
light traffic, particularly in the early hours of each day, is unacceptably large.
This is clearly visible in Figure 4 with estimated speeds on day 3 around 1
am shooting up to 120 mph shortly before plummeting to 30 mph. The true
speed at that time is nearly constant at 64 mph. Recall that our preliminary
estimate (3) is obtained by replacing the average (effective) vehicle length
L̄(d, t) by (an estimate of) its expectation µt. When only a few vehicles pass
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the detector during a given time interval, the average vehicle length will have
a large variance. Hence, in light traffic, the average vehicle length is likely
to differ substantially from the mean. For instance, if only 10 vehicles pass,
then it makes a big difference if there are 6 cars and 4 trucks or 7 cars and
3 trucks. This explains the large fluctuations of our preliminary estimator v̂
during light traffic.

3 Smoothing

Coifman (2001) suggests a simple fix for the unstable behavior of v̂ during
light traffic. He sets the estimated speed equal to the free flow speed vFF

when the occupancy is low.

v̂coifman(d, t) =

{

v̂(d, t) if ρ(d, t) ≥ α0.6

vFF otherwise .

The performance of this estimator, in terms of mean squared error, is cer-
tainly not bad. However, about 16 out of every 24 hours (60%), the estimated
speed is a constant and that is not realistic. We can do better, in appearance
as well as in mean squared error.

It is clear that we need to smooth our preliminary estimate v̂(d, t), but
only when the volume is small. For the purpose of real time traffic man-
agement, it is important that our smoother be causal and easy to compute
with minimal data storage. Taking all this into consideration, we used an
exponential filter with varying weights. A smoothed version ṽ of v̂ is defined
recursively as

ṽ(d, t) = w(d, t)v̂(d, t) + (1 − w(d, t))ṽ(d, t − 1), (4)

where

w(d, t) =
N(d, t)

N(d, t) + C
, (5)

and C is a smoothing parameter to be specified. If the time interval is of
length 5 minutes, then a reasonable value would be C = 50. If the volume
N(d, t) approaches capacity, say N(d, t) = 100 vehicles per 5 minutes (1200
veh/h), then there is hardly any need for smoothing and the new observation
receives substantial weight 2/3. On the other hand, if the volume is very
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small, say N(d, t) = 10 (120 veh/h), then the smoothing is quite severe with
the new observation receiving a weight of only 1/6.

Our filtered estimator ṽ is plotted in Figure 5. The correspondence with
the true speed is very good. The large variability during light traffic that
plagued the preliminary estimator v̂ has been suppressed, while its good
performance during heavy traffic and congestion has been retained.

We will now explain how our filter is “inspired” by the familiar Kalman
filter. Suppose that the true, unobserved speed evolves as a simple random
walk:

vt = vt−1 + εt, εt ∼ N (0, τ 2). (6)

Suppose we observe v̂t = Ntµ̂t/kt = vtµt/L̄t, where µ̂t is our estimate of
EL̄t = µt. We will work conditionally on the observed volume Nt. The
conditional expectation of v̂t is—though not quite equal—hopefully close
to vt. Using a one step Taylor approximation we find that the conditional
variance of v̂t is of the order 1/Nt. This “inspires” a measurement equation

v̂t = vt + ξt, ξt ∼ N (0, σ2
t ) = N (0, σ2/Nt). (7)

Finally, we assume that all error terms εt and ξt are independent. Note that
the variance of the measurement error ξt depends inversely on the observed
volume Nt. In light traffic, when Nt is small the variance is large. This is
exactly the problem we noted in Figure 4.

The Kalman filter recursively computes the conditional expectation of
the unobserved state variable vt given the present and past observations
v̂1, v̂2, . . . , v̂t.

ṽt = E(vt | v̂1, v̂2, . . . , v̂t).

In our simple model we can easily derive the Kalman recursions. They are

ṽt = wtv̂t + (1 − wt)ṽt−1,

with

wt =
Pt−1 + τ 2

Pt−1 + τ 2 + σ2
t

=
Nt

Nt + σ2/(Pt−1 + τ 2)
,

where Pt is the prediction error E(vt − ṽt)
2.

We note the correspondence of these Kalman recursions with our filter 4.
We decided not to try to estimate σ2 and τ 2 partly because we feel that that
would be difficult to do reliably and partly because that would mean taking
our simple model a little too seriously.
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4 Remarks

4.1 Known free flow speed

We assume above that the free flow speed vFF is known, which is typically not
true. We believe free flow speed depends primarily on the number of lanes
and on the lane number, so in practice we use a table of free flow speeds (in
miles per hour) which are based on double loop data from Caltrans district
4 “Bay Area”. Interestingly, the data seem to fit a very simple formula to a
reasonable degree. For an n lane freeway, the freeflow speed in lane m equals
65 + 2.5*(n - m) mph.

lane number
1 71.3 71.9 74.8 76.5
2 65.8 69.7 71.0 74.0
3 62.7 67.4 72.0
4 62.8 69.2
5 64.5

Clearly, it would be preferable to have an independent method to estimate
site specific free flow speed. Petty et al.’s (1998) cross-correlation approach
works well when occupancy and volume are measured in 1 second intervals.
However, 20 or 30 second measurement intervals are more common and at
such aggregation this method breaks down.

4.2 Further assumptions on mean vehicle length

We have assumed that the mean (expected) vehicle length µt depends on the
time of day only. However, we have noticed that µt also depends on

1. Day of the week. The vehicle mix on a Monday differs from a Sunday.

2. Lane. There is a higher fraction of trucks in the outer lanes.

3. Location of the detector station. Certain routes are more heavily trav-
eled by trucks than others.

4. Detector sensitivity. Loop detectors are fairly crude instruments that
are almost impossible to calibrate accurately. If a detector is not prop-
erly calibrated, the occupancy measurements will be biased.
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To account for all this, we must form separate estimates of µt to cover these
different situations. We store estimates of µt for every 5 minute interval, for
every day of the week and for every lane at every detector station. In real
time, the appropriate values are retrieved, multiplied by the observed volume
to occupancy ratio and filtered.

4.3 Other methods

We briefly review two other methods that also do not assume a fixed value for
L̄(d, t), beginning with a method of Coifman (2001) which has been modified
by Jia et al. (2002). Suppose that we have a zero-one valued state variable
S(d, t) which indicates congestion or free flow. The state variable could be
defined, for instance, by thresholding the occupancy ρ(d, t). While the state
is “free flow”, the algorithm tracks L̄(d, t), assuming constant free flow speed.
As soon as the state becomes “congested”, L̄(d, t) is kept fixed and the speed
v(d, t) is tracked.

The main problem we experienced with this algorithm is that it depends
crucially on the state S(d, t). In particular, if the state is believed to be
free flow, while congestion has already set in, the method goes badly astray.
We found it difficult to develop a good rule to define S(d, t). In fact, this
difficulty was the main reason for us to look for a different approach.

Building on work of Dailey (1999), Wang and Nihan (2000) propose a
model based approach to estimate L̄(d, t) and v(d, t). Their log linear model
relates L̄(d, t) to the expectation and variance of the occupancy ρ(d, t), to
the volume N(d, t) and to two indicator functions that distinguish between
high flow and low flow periods. The model has five parameters which need to
be estimated from double loop data. It is not at all clear if these parameter
estimates carry over to a particular, single loop location of interest. Wang
and Nihan (2000) defer this issue to future research.

4.4 Estimating truck fraction

If we have a speed estimate v̂(d, t), we can easily obtain an estimate of the
average (effective) vehicle length L̄(d, t) as

L̂(d, t) =
v̂(d, t)ρ(d, t)

N(d, t)
.
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For certain applications it is of interest to determine the truck volume on a
particular freeway segment. Specialized equipment to count trucks is costly
and manual counting is only feasible for short time periods and a limited
number of locations. Kwon et al. (2003) suggest how truck volume can be
estimated routinely from the estimated effective vehicle length. Denote by
L̄c(d, t) and L̄t(d, t) the average effective length of the cars and trucks that
passed on day d at time t. We have

L̄(d, t) = p(d, t)L̄t(d, t) + (1 − p(d, t))L̄c(d, t),

where p(d, t) is the proportion of trucks. Let `c and `t denote the mean
effective length of cars and trucks. These means are largely determined
by which vehicles are considered to be trucks. Replacing averages by their
means, we can estimate the truck proportion as

p̂(d, t) =
L̂(d, t) − `c

`t − `c

.

We estimate the truck volume by p̂(d, t)N(d, t).
Loop detectors record volume and occupancy by thresholding an electri-

cal signal. The threshold has to be set manually, and there is no practical
method for precise calibration. As a result, any two detectors will likely
record different occupancies for the same vehicle traveling at constant speed.
Translated to effective vehicle length, this difference can be several feet. Our
speed estimator is designed to be insensitive to this problem, but the above
truck volume estimator is not. The possible effect of detector bias on the
estimator can be gauged by perturbing L̂(d, t).

4.5 The PeMS project

Our efforts described here are part of the Performance and Measurement
System (PeMS) project. This project is a collaboration of the California
Department of Transportation (Caltrans) and the University of California
at Berkeley. The core of PeMS is a database which receives and stores 30
second loop detector measurements from the entire state. Since most of the
detectors in California are in single loop configuration, we have a pressing
need for a good method to obtain speeds. Once occupancy, volume and
speed are available, PeMS proceeds to compute such performance measures
as VMT (vehicle miles traveled), VHT (vehicle hours traveled) and travel
time on selected routes. PeMS is soon to be officially deployed by Caltrans.
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Figure 1: speed (top) and effective vehicle length (bottom) in the fast lane
for four weekdays on I80.
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Figure 2: speed (top) and effective vehicle length (bottom) in the truck lane
for four weekdays on I80.
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Figure 3: Estimating the mean effective vehicle length µt.
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Figure 4: Our preliminary estimate, defined in (3), superimposed on the true
speed. Note the large variance, especially during the early hours of the day.
Note also, that during congestion the estimator performs very well.
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Figure 5: Our estimate Ṽ , defined in (4), superimposed on the true speed.
The estimate shows good correspondence with the true speed.
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